Phase Diagram and Electrical Conductivity of CeBr₃-KBr

Leszek Rycerz^a, Ewa Ingier-Stocka^a, Slobodan Gadzuric^{b,c}, and Marcelle Gaune-Escard^b

- ^a Chemical Metallurgy Group, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- ^b Ecole Polytechnique, Mecanique Energetique, Technopôle de Chateau-Gombert, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France
- ^c Faculty of Natural Science, Department of Chemistry, University of Novi Sad, Trg. Obradovica 3, 21000 Novi Sad, Serbia

Reprint requests to Prof. M. G.-E.; Fax: +33 4 91 11 74 39; E-mail: mge@polytech.univ-mrs.fr

Z. Naturforsch. **62a**, 197 – 204 (2007); received December 31, 2006

Presented at the EUCHEM Conference on Molten Salts and Ionic Liquids, Hammamet, Tunisia, September 16–22, 2006.

This paper continues our research program on lanthanide halide-alkali metal halide systems. Differential scanning calorimetry (DSC) was used to investigate the phase equilibria of the CeBr₃-KBr system. This system is characterized by the two congruently melting compounds K₃CeBr₆ and K₂CeBr₅ and the three eutectics located at the CeBr₃mole fractions 0.193 (837 K), 0.295 (855 K) and 0.555 (766 K). K₃CeBr₆ forms at 775 K and melts congruently at 879 K with the related enthalpies 54.5 and 41.7 kJ mol⁻¹, respectively. K₂CeBr₅ melts congruently at 874 K with the enthalpy 82.4 kJ mol⁻¹. The electrical conductivity was measured of all CeBr₃-KBr mixtures and of the pure components down to temperatures below solidification. The experimental determinations were conducted over the entire composition range in steps of about 10 mol%. The specific electrical conductivity decrease with increasing CeBr₃ concentration, with significantly larger conductivity changes in the potassium bromide-rich region. The results are discussed in terms of possible complex formation.

Key words: Cerium Bromide; Potassium Bromide; Phase Diagram; Electrical Conductivity; Differential Scanning Calorimetry.